

Application Note (LCTR[®] Reactor) Laminar Co., Ltd.

CONTENTS

Electronic material ·····	6
Food ·····	10
Fine chemical	12
Petrochemistry	16
Environmental	18

LCTR[®]-series

LCTR[®]-series means a reactor using a Taylor fluid flow developed by our company, which is the first chemical reactor in the world to produce high-purity substances uniformly.

>>> Lithium ion battery (Lithium Carbonate)

Material Properties

	Lithium Carbo	nate (Li ₂ CO ₃)
	Molecular weight (g/mol)	73.891
	Melting point (°C)	723
	Boiling point (°C)	1310
	Shape	Odorless white powder

Objective

To develop the production method of Lithium Carbonate from sea water or brine

Experiment method

Comparison Table

Division	Current	Our reactor	
Process	Batch reactor	Taylor reactor	
Production Process	incontinuous	continuous	
Purity (%)	99.5	99.5	
Particle size (』m)	over 100	over 100	
Reaction time (min)	60	30	

Result

Analysis result of Li₂CO₃ particle size

Analysis result of Li₂CO₃ by SEM

Plate type

Sphere type

>> Lithium ion battery [(Ni_xCo_yMn_z)(OH)₂]

Material Properties (Confidential)

Objective

To make particle distribution uniformed and produce high-density precursor

Comparison Table		
Division	Current	Objective
Particle size (µm)	10	10
Reaction Time (h)	8~16	2~4
Production Process	Batch	continuous
Span ([D ₉₀ -D ₁₀]/D ₅₀)	0.5	0.2
Tap density (g/mL)	2.1	2.2
рН	11	11

Result

l

Ni : Co : Mn (1 : 1 : 1)

Analysis result by SEM

Ni : Co : Mn (5 : 3 : 2)

Analysis result by SEM

Analysis result by PSA

>> Fuel Cell (LNF)

Material Properties (Confidential)

Objective

To grow the particle size

Result

The particle, which precipitates with LNF by our Taylor reactor, gets twice bigger

It is much easier to control pH and flux.

There is crystal growth caused by uniformed mixing.

Comparison Table

Division	Current	Our reactor
Particle size (nm)	50	200
Production Process	continuous	continuous

Result

Analysis result by our reactor

Existing

Our reactor

>> OLED material (NPB)

Material Properties

$\mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} \mathcal{C} $	N,N'-Bis(naphthalen-1-yl)- N,N'-bis(phenyl)benzidine
Application	OLED-Hole Transport
Abs.Max	339 nm (in CH ₂ Cl ₂) 352 nm (in THF)
Formula	$C_{44}H_{32}N_2$
Molecule weight	588.76
Shape	white powder

Objective

To develop re-crystallization process of high-purity OLED by wet-process

Experiment method

High-purification process by the difference in solubility (Cooling and Drowning-out Crystallization)

Comparison Table

Division	Current	Objective
process	dry-process	wet-process
Purity (%)	99.99	99.99
Process type	Batch	continuous
Temperature (°C)	270~280	0~80
Pressure (Torr)	$10^2 \sim 10^6$	normal pressure
Recrystallizatoin time (h)	12~24	0.5~1
Cost (\$/kg)	10,000	3,000

Result

The result of impurities' decrement by our reactor

>> Tryptophan

Material Properties

Molecular formula : $C_{11}H_{12}N_2O_2$

Molecular weight : 204.23 g/mol

Objective

To develop commercial technology through the improvement in purity and increase in recovery.

Experiment method

Cooling and Drowning-out Crystallization and adding polymer

Result

• Current problems

Energy expense is high since the current process uses vacuum evaporation production expense is also high due to long process time.

Low-grade Tryptophan is produced due to the inferior property.

Solution

Hybrid crystallization should be used for commercialization since it is hard to solve problems by just one process

• Result

Increment in 3% purity (98%) and 15% recovery rate (85%) and decrement in 1/6 process time

Comparison Table

Division	Current	Our reactor
Recovery rate (%)	60	75
Purity (%)	95	98
Particle size (』m)	30	more than 50

Result

Analysis result of Tryptophan by SEM

>> Methionine

Material Properties

Molecular formula : C₅H₁₁NO₂S

Molecular weight : 149.21 g/mol

Objective

To develop commercial technology through the improvement in purity and increase in recovery.

Comparison Table

Division	Current	Our reactor
Recovery rate (%)	60	80
Purity (%)	95	98
Particle size (#m)	50	200

Result

Analysis result of Methionine by SEM

Material Properties

	Sodium iodi	de (Nal)	
231128	Molecular weight (g/mol)	149.894	
	Melting point (°C)	661	
	Boiling point (°C)	1,304	
	Shape	white solid	

Objective

To remove Chlorine

Comparison Table

Division	Current	Our reactor	
[Cl ⁻] (ppm)	2,000	500	
Recovery rate (%)	95	99	

>> Catalyst

Material Properties (Confidential)

Objective

To produce continuous catalyst

Experiment method

pH	7
Agitation speed (rpm)	600
Reaction time (min)	10~30
Develop process	Our reactor (Continuous)

Continuously producing catalyst setting at pH 7

Result

Able to control pH by PID controller and continuously produce catalyst Able to Control the desired particle shape (only in the case that pH should be consistent)

Food

>>> Barium Nitrate

Material Properties

	Barium Nitr	ate, Ba(NO ₃) ₂
	Molecular weight (g/mol)	261.37
N Ba ²⁺	Melting point (°C)	590
	Boiling point (°C)	10.5 g/100 mL (25 °C)
	Shape	white crystals

Objective

To remove heavy metal

Comparison Table			
Type of reactor	PFR reactor	Our reactor	
Recovery rate (%)	80	85	
Purity (%)	4	1	
[Heavy metal] (ppm)	10	2	

>> K₂CO₃ · 1.5H₂O

Material Properties

	Potassium carbonate, K ₂ CO ₃	
0	Molecular weight (g/mol)	138.205
к+ Ц к+	Melting point (°C)	891
-0 0-	Boiling point (°C)	112 g/100 mL (20 °C)
-	Shape	white, hygroscopic solid

Objective

To produce $K_2CO_3 \cdot 1.5H_2O$	
------------------------------------	--

Comparison Table		
Division	Current	Our reactor
Recovery rate (%)	-	95
Purity (%)	-	99.9
Hydrate type	5 H₂O, anhydrous	1.5 H_2O , 5 H_2O , anhydrous

>>> Flame Retardant

Material Properties (Confidential)

Objective

To remove Chlorine

Comparison Table

Division	Current	Our reactor	
Recovery rate (%)	80	over 90	
Purity (%)	100	100	
[Cl ⁻] (ppm)	1,000	60	

Result

Analysis result of Flame Retardant by SEM

>>> Toner

Material Properties (Confidential)

Objective To remove heavy metal

Comparison Table

Division	Current	Our reactor
Process	Evaporation	Drowning-out Crystallization
Recovery rate (%)	60	99.5
Purity (%)	98	98.5
[Heavy metal] (ppm)	50	23

Material Properties

	Silicon dioxide	e (SiO ₂)	
	Molecular weight (g/mol)	60.08	
111	Melting point (°C)	1600-1725	
	Boiling point (°C)	2,230	
	Density (g/cm [°])	2.648	

Objective

To produce 100 nm uniformed silica particle

Experiment method	
Temperature (°C)	40
Agitation Speed (rpm)	600
Reaction Time (min)	30
Development process	Continuous
Reaction process	Sol-Gel process

Result

It was impossible to produce uniformed particle due to the delay time on nucleation. Nucleation and crystal growth occurs in each reactor

Analysis result of SiO₂ by SEM

>>> Durene

Material Properties

Objective To separate isomers

Experiment method

Isomers separated by melt crystallization

Comparison Table

Division	Current	Our reactor	
Process	Distillation	Melt crystallization	
Recovery rate (%)	75	89	
Density (%)	97	99	
Operative temperature (°C)	Over 200	-30~ordinary temperature	

>> p-DIB

Material Properties (Confidential)

Objective

To use p-DIB by separating isomers and impurities.

Experiment method

Isomers separated by melt crystallization

According to literate researches, the melting point of p-DIB is 129°C and also the melting points of the other two isomers and impurity are 20°C, 45°C and 119°C respectively.

Result

Petro chemical substances are normally separated into isomers by distillation. However, it is hard to separate substances with similar boiling points. Our reactors separate them by melting points.

Our reactors are able to separate more than 98% of p-DIB after filtering out impurities by sweating process many times. The recovery rate is over 80%

LG Chemical introduced our reactors in production.

Result

Purity : 98 % ↑ Isomer separation

p-DIB (purity over 98%)

>>> Ammonium dihydrogen phosphate

Material Properties

Ammonium dihydrogen phosphate (NH ₄ H ₂ PO ₄)		
Molecular weight (g/mol)	115.03	
Melting point (°C)	190	
Shape	white tetragonal crystals	

Objective

To produce $NH_4H_2PO_4$ from waste acid $NH_4OH + H_3PO_4 \rightarrow NH_4H_2PO_4 + H_2O$

Comparison Table

Division	Current	Our reactor	
Process	Vacuum evaporation	Reaction crystallization	
Particle size (』m)	200	300	
Recovery rate (%)	70	80	
Reaction time (h)	2	0.5	

>> NiSO₄, CoSO₄

Material Properties

Objective

To design the process to extract Ni and Co crystal dissolved in waste fluid.

Experiment method

Extracting the high-purity NiSO₄ and CoSO₄ by drowning-out crystallization.

Result

Production possibility of NiSO₄ and CoSO₄ with the right hydrate Rare earth in waste fluid is reusable for production since it is analyzed that the purity and recovery rate are over 99.5% and 90% respectively.

Result

CoSO₄

NiSO₄

\gg Mn₃O₄

Material Properties

	Manganese(II,III) oxide (Mn ₃ O ₄)	
	Molecular weight (g/mol)	228.812
	Melting point (°C)	1,567
	Boiling point (°C)	2,847
	Density (g/cm [°])	4.86

Objective

To collect high-purity $Mn_{3}O_{4}$ in waste fluid To execute two processes by our only one reactor

Experiment method

Temperature (℃)	70
Agitation speed (rpm)	1,000
Reaction time (h)	30
Develop process	Continuous reactor (LCTR Series)
$MnSO_4 + NaOH \rightarrow Mn(OH)_2$ (Liquid-liquid $Mn(OH)_2 + O_2 \rightarrow Mn_3O_4$ (Gas-liquid reacti	reaction) on) Process of batch reactors

 $Mn(OH)_2 + NaOH + O_2 \rightarrow Mn_3O_4$ (Liquid-liquid and Gas-liquid reaction) \blacktriangleright Process of our reactor

Result

Shortening the process time due to using only one reactor in two processes. Over 99.5% in purity

Analysis result of Mn₃O₄ produced by our reactor

Fine chemical

Petrochemistry

Material Properties

	Iron(II,III) oxid	e (Fe ₃ O ₄)	
	Molecular weight (g/mol)	231.533	
	Melting point (°C)	1,597	
	Density (g/cm ³)	5.17	

Objective

To collect Fe₃O₄ in waste fluid

To execute two processes by our only one reactor

Experiment method

Temperature (℃)	80
Agitation speed (rpm)	600
Reaction time (h)	30
Develop process	Continuous reactor (LCTR [®] Series)

 $\mathsf{FeCl}_2 + \mathsf{CaO} \rightarrow \mathsf{Fe}(\mathsf{OH})_2 + \mathsf{O}_2 \rightarrow \mathsf{Fe}_3\mathsf{O}_4 \text{ (Liquid-liquid-Gas reaction)}$

 FeCl_2 + CaO + O₂ \rightarrow Fe₃O₄

Result

Shortening the process time due to using only one reactor in Solid-Liquid-Gas reaction process. Reducing the installation and operation cost

Analysis result of Fe₃O₄ produced by our reactor

Environmental

HISTORY

2014.07	Expansion (Headquarter & Lab : #512 / Factory : #209)
2014.06	Attraction of investment from Samho Green Investment
2014.06	Selected the Energy technology development Project and obtained
	U\$860,000 by one of the government organizations, MOTIE
2014.05	Certified Green Technology
2014.05	Certified CE marking
2014.04	Selected POSCO Venture Partners 7th membership
2013.09	Moved to #209, 27, Dunchon-daero 457beon-gil, Jungwon-gu,
	Seongnam-si, Gyeonggi-do, Korea
2013.08	Selected the Energy technology development Project and obtained
	U\$800,000 by one of the government organizations, MOTIE
2013.02	Certified Employee Invention
2013.01	Made an agency contract with Unitechnology in Japan and started exporting
2011.12	Semi Grand Prize (Seoul International Invention Fair, KIPA)
2011.07	Certified ISO 9001/14001
2011.04	Established R & D Center
2011.01	Factory Registration Certification
2010. 11	Venture Enterprise Accreditation (KIBO)
2010.10	Moved to #902, 27, Dunchon-daero 457beon-gil, Jungwon-gu,
	Seongnam-si, Gyeonggi-do, Korea

2010.08 Established

Laminar Co., Ltd.

#209, 27, Dunchon-daero 457beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do, Korea
Tel. +82-31-737-2375
Fax. 82-31-737-2757
E-mail. laminar@laminarm.co.kr
www.laminarm.co.kr